


Encryption enforcement
Enforcing encryption of AWS resources for Data Protection

 4 minute read Published: 5 May, 2021

Data Protection Enforcement

The MPS environment was examined by AWS Professional Services and they

suggested several improvements based on the VWFS IT Standards (E-OHB -

G10.P01 - IT Compliance) and the Cloud Security Alliance - Cloud Control Matrix

(CSA CCM).

Those improvements were thoroughly assessed and tested in collaboration with

GRC.

Affected AWS resources and impact

The enforcements are mainly encryption related and affect the following AWS

services

EC2

S3

RDS

EFS

MPS

#

The Data Protection enforcements take effect on all new MPS tenants provisioned
after March 7, 2021. Existing tenants are not affected as those are breaking
changes.
CloudGuard is used as an organizational measurement and compensatory control for
existing tenants.

#

https://docs.platform.vwfs.io/

If you try to run one of the mentioned actions below via UI, CLI or API and you do

not adhere to the conditions, you will get an error.

MPS enforces the restrictions via Service Control Policies (SCP) which are policies

that can be used to manage permissions at the AWS Organization level.

Please keep in mind that those SCPs snippets below are simplified. The

comprehensive SCP can be found here.

EC2 restrictions

MPS enforces, that EC2 instances and EBS volumes can only be created if they are

encrypted. Therefore we restrict the following:

EC2 instances can only be created if the root volume is encrypted

EBS volumes and EBS snapshots can only be created if they are encrypted

Affected actions

S3 restrictions

MPS enforces that all objects in S3 buckets are encrypted by default and insecure

transport for S3 is not possible. Therefore we restrict the following:

Objects can only be uploaded to S3 if the header

 is present

S3 actions can only be executed if secure transport is enabled via bucket policy

Affected actions

access denied

#

#

"Effect": "Deny",
"Action": [
 "ec2:CreateSnapshots",
 "ec2:CreateSnapshot",
 "ec2:RunInstances",
 "ec2:CreateVolume"
],
"Resource": "*",
"Condition": { "Bool": { "ec2:Encrypted": "false" } }

#

s3:x-amz-server-side-encryption

#

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://github.platform.vwfs.io/mps/aws-organisations/blob/master/src/terraform/scp/policies/mps-control-baseline-2-0.json

Examples

Upload object via AWS Console

If you want to upload objects directly via AWS console, you need to select

 and .

Upload object via CLI

You need to include or

 in your call.

"Effect": "Deny",
"Action": "s3:PutObject",
"Resource": "*",
"Condition": {
 "StringNotEquals": { "s3:x-amz-server-side-encryption": ["aws:kms", "AES256"]},
 "Null": { "s3:x-amz-server-side-encryption": true }

"Effect": "Deny",
"Action": "s3:*",
"Condition": { "Bool": { "aws:SecureTransport": "false" } }

#

specify an encryption key use default encryption bucket settings

--server-side-encryption=AES256

--server-side-encryption=aws:kms aws s3api put-object

Read more about it here

Upload Object via SDK

You need to include or

 in your call. The following snippet

uses NodeJS as an example which can be translated to other languages.

Deployment via Serverless

Serverless supports out of the box the configuration of an existing deployment

bucket and specifying the encryption method.

We advise our customers to leverage the MPS provided compliant deployment

buckets which already fulfill all necessary compliance requirements.

Afterwards you would only need to use the parameter with

 or .

Using S3 as terraform state

If you are using S3 for storing your terraform state, then you need to add

 to you state definition like below.

aws s3api put-object \
 --bucket=<<your-bucket>> \
 --key=<<your-key>> \
 --body=<<body>> \
 --server-side-encryption=<<AES256 || aws:kms>>

ServerSideEncryption: 'AES256'

ServerSideEncryption: 'aws:kms' s3.putObject()

s3.putObject({
 Bucket: <<your-bucket>>,
 Key: <<your-key>>,
 Body: <<body>>,
 ServerSideEncryption: <<AES256 || aws:kms>>,
})

serverSideEncryption

serverSideEncryption: AES256 serverSideEncryption: aws:kms

provider:
 deploymentBucket:
 name: <<your-custom-deployment-bucket>>
 serverSideEncryption: AES256 || aws:kms

encrypt = true

https://docs.aws.amazon.com/cli/latest/reference/s3api/put-object.html
https://docs.platform.vwfs.io/docs/aws/lambda_bucket/
https://docs.platform.vwfs.io/docs/aws/lambda_bucket/

RDS restrictions

MPS enforces that RDS cluster creation, Aurora instance creation and cluster

restore from S3 is only possible with encryption enabled. Therefore we restrict the

following:

RDS Aurora instance can only be created if it is encrypted by default

RDS cluster can only be created if it is encrypted by default

RDS cluster can only be restored from S3 if it is encrypted by default

RDS action restrictions

terraform {
 required_version = ">= 0.14"

 backend "s3" {
 bucket = "<<your-bucket>>"
 region = "<<your-region>>"
 profile = "<<your-profile>>"
 key = "<<your-key>>.tfstate"

 dynamodb_table = "terraform_lock"
 encrypt = true
 }
}

#

#

"Effect": "Deny",
"Action": [
 "rds:RestoreDBClusterFromS3",
 "rds:CreateDBCluster"
],
"Resource": "*",
"Condition": { "Bool": { "rds:StorageEncrypted": "false" } }

"Effect": "Deny",
"Action": "rds:CreateDBInstance",
"Resource": "*",
"Condition": {
 "StringNotLike": { "rds:DatabaseEngine": ["aurora*", "docdb"] },
 "Bool": { "rds:StorageEncrypted": "false" }
}

EFS restrictions

MPS enforces that EFS creation is only possible with encryption enabled.

EFS action restrictions

Get in touch

Go to Support page

Published by Crispin Weissfuss 5 May, 2021 using 709 words.

MPS Team

Made with love

#

#

"Effect": "Deny",
"Action": "elasticfilesystem:CreateFileSystem",
"Resource": "*",
"Condition": { "Bool": { "elasticfilesystem:Encrypted": "false" } }

https://docs.platform.vwfs.io/docs/support/

