Issue Description
In details the problem happens when the container with image quay.io/opencloudio/ibm-license-usage-logger-for-fargate:latest try to write on the provided Amazon S3 bucket specified into environment variables of the ECS Task Definition.

We got the error:
<?xml version="1.0" encoding="UTF-8"?> <Error><Code>AccessDenied</Code><Message>User: arn:aws:sts::175511088100:assumed-role/dap-dev-ecs-cluster-task-exec-role/d60a59196ee84470b667885312863036 is not authorized to perform: s3:PutObject on resource: "arn:aws:s3:::ibm-license-service-175511088100/IBM-License-usage/2024-10-09/product-null/task-d60a59196ee84470b667885312863036.csv" with an explicit deny in a service control policy</Message><RequestId>T6HWV2WP4D6KS1FM</RequestId><HostId>7ndaPjRlP27Djx0xWuJQwTkcxXHOEH8g3ClQiFuQjlY1wLcfAOaAgE8+rfiYH4JTYVonQbWHynU=</HostId></Error>

This error is related to the fact that probably in the image there is a logic where you have an s3:putObject which not specified the encryption on parameter.
On our side, unfortunately, we have some constraints related to the MPS platform that make an explicit deny on each S3 bucket deployed in the account:

[image:]
So, whenever has made an s3:PutObject, we must specify the param “--server-side-encryption” otherwise the SCP policy made by MPS raise an error “Access Denied”

[image: A screenshot of a computer program

Description automatically generated]

Obviously, we have the total control of the infrastructure configuration for Amazon S3 bucket, but we don’t have the control of the putObject logic that is in the image quay.io/opencloudio/ibm-license-usage-logger-for-fargate:latest

Is there a way to check, how the s3:putObject is done on the code?
Is there an environment variable that we can specify on ECS Task Definition and that your s3:putObject use?

Procedure Followed
We have followed the procedure that was suggested multiple times, which we had initially followed to configure the file https://www.ibm.com/docs/en/cloud-paks/foundational-services/4.6?topic=service-tracking-license-usage-aws-ecs-fargate)
[image:]

image1.png
S3 restrictions

MPS enforces that all objects in S3 buckets are encrypted by default and insecure
transport for S3 is not possible. Therefore we restrict the following:

* Objects can only be uploaded to S3 if the header s3:x-amz-server-side-encryption
is present
* S3actions can only be executed if secure transport is enabled via bucket policy

Affected actions

"Effect”

"Action"

"Resourc

“Condition":
"StringNotEquals”: { "s3:x-amz-server-side-encryption": ["aws:kms", "AES256"]},
"Null": { "s3:x-amz-server-side-encryption": true }

Deny",
s3:PutObject”,

"Effect”: "Deny",
"Action": "s3:*",
“Condition": { "Bool

{ "aws:SecureTransport": "false" } }

image2.png
Upload object via CLI

You need to include ==server-side-encryption-AES256 or

—-server-side-encryption-aws:kms inyour aws s3api put-object call

Read more about it here

aws s3api put-object \
--bucket=<<your-bucket>> \

--server-side-encryption=<<AES256 || aws:kms>>

Upload Object via SDK

You need to include ServerSideEncryption: 'AES256' or
ServerSideEncryption: 'aws:kms' in your s3.putObject() call. The following snippet

uses NodeJS as an example which can be translated to other languages.

s3.putObject({
Bucket: <<your-bucket>>,
Key: <<your-key>>,
Body: <<body>>,
ServerSideEncryption:

<<AES256 || aws:kms>>,
B

image3.png
Procedure

To track license usage on AWS ECS Fargate complete the following steps.
Note: To complete these steps, you need to use the Task Definition of your product.

1. Go to the AWS Console.

2. | Configure the S3 bucket to store the license usage data. The name of the bucket must follow the
ibm-license-service-<AWS_accountID> pattern. For more information, see

[

3. Create the dedicated taskRoleAxrn. This role is required to permit the logger to access the
dedicated S3 storage. For more information, see

4. Create the following IAM policy with read and write access, and define it on the S3 bucket. This
policy connects permissions for S3 bucket with previously created taskRoleArn.

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"AWS": "<YOUR_TASK_ROLE_ARN>"
3

"Action": [
"s3:PutObject",
"s3:GetObject"

1,
"Resource": "arn:aws:s3:::<AWS_S3_BUCKET_NAME>/x"

